FRACTALS

PROJECT GOALS

studying properties of the Sierpinski triangle and the Koch snowflake

The Sierpinski triangle

Chaos game

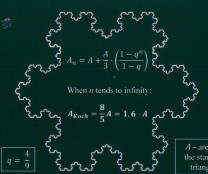
$$P_{n} = 2a\left(\frac{3}{4}\right)^{3}$$

 $\frac{3}{2} > 1: \left(\frac{3}{2}\right)^n$ gets larger as $n \to \infty$

$$A_n = \frac{a^2 \sqrt{3}}{3} \left(\frac{3}{4}\right)^n$$

a – side length

Fractal dimension


$$D = log_k n$$

D - fractal dimension

$$D_{Koch} = log_3 4$$

The Koch snowflake

 $\frac{3}{4} < 1: \left(\frac{3}{4}\right)^n$ gets smaller as $n \to \infty$

CYPRUS

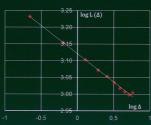
734

771

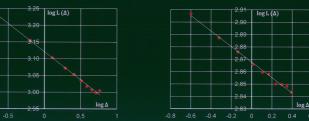
1,03

0,48

Perimeter tends to infinity while area tends to zero.


Perimeter tends to infinity while area stops at 1, 6 · A.

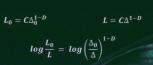
The Coastline paradox


Length of the coastline depends on the length of the measuring stick.

CROATIA


N	L (Δ) / km	Δ/km
1	1041	3,87
2	1130	2,58
3	1267	1,29
4	1427	0,65
5	1706	0,22

$$y = -0,168x + 3,121$$



$$\beta - 1.168x + 3.121$$
 $\beta - \text{slope o}$

$$y = -0.063x + 2.868$$
$$D = 1.063$$

β – slope of the line L — length of the coastline Δ — length of the measuring stick

Conclusion:

The Croatian coastline is more jagged than the one of Cyprus because its fractal dimension is bigger.

1,168 > 1,063